The Effect of Disintegrants and Mixing Method on Physicochemical Properties of Telmisartan
DOI:
https://doi.org/10.35814/jifi.v19i2.1013Keywords:
telmisartan, starch 1500®, sodium starch glycolate, microcrystalline cellulose, croscarmellose sodium, dissolutionAbstract
Telmisartan (TMS) has a compact structure and is interlocked between crystal units. As a result, the substance has a high electrostatic force, which causes TMS to sintering when compressed into tablets. One method of overcoming sintering on TMS tablets is to add a disintegrant to the compressed tablet. The disintegrants used are derived from starch groups: Starch 1500® (S1500) and sodium starch glycolate (SSG), as well as microcrystalline cellulose (MCC) and croscarmellose sodium (CCS) groups. The purpose of this study was to examine the effects of several disintegrants on the dissolution and physicochemical properties of TMS with various treatments. TMS was varied with each disintegrant at a ratio of 1:9 % b/b. The treatment of TMS binary mixtures with various disintegrants includes physical mixtures, milled mixtures, compressed mixtures, and crushed compressed mixtures. Characterization and evaluation include PXRD and SEM testing as well as dissolution test. The characterization of PXRD and SEM in various treatments showed the effect of physicochemical properties on the TMS binary mixture with various disintegrants. The combination of TMS:CCS with a ratio of (1:9) resulted in the highest dissolution rate in all treatments.The treatment of the milled mixture produced the highest dissolution with DP60 minutes, which was around 55.86±2.47%. The addition of disintegrants to TMS with various treatments may reduce sintering but is not sufficient to meet the requirements for TMS dissolution, which dissolves within 30 minutes in phosphate buffer medium pH 7.5 with Q>75%.
References
Downloads
Published
Issue
Section
License
Licencing
All articles in Jurnal Ilmu Kefarmasian Indonesia are an open-access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which permits unrestricted non-commercial used, distribution and reproduction in any medium.
This licence applies to Author(s) and Public Reader means that the users mays :
- SHARE:
copy and redistribute the article in any medium or format - ADAPT:
remix, transform, and build upon the article (eg.: to produce a new research work and, possibly, a new publication) - ALIKE:
If you remix, transform, or build upon the article, you must distribute your contributions under the same license as the original. - NO ADDITIONAL RESTRICTIONS:
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
It does however mean that when you use it you must:
- ATTRIBUTION: You must give appropriate credit to both the Author(s) and the journal, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
You may not:
- NONCOMMERCIAL: You may not use the article for commercial purposes.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

















