Optimization of Phycocyanin Production of Marine Cyanobacteria BTM 11 and its Antioxidant Properties Test
DOI:
https://doi.org/10.35814/jifi.v20i2.1198Keywords:
Antioxidant, DPPH, light intensity, marine cyanobacteria BTM 11, nitrogen concentration, phycocyaninAbstract
Phycocyanin (PC)-producing cyanobacteria has shown many pharmaceutical applications, the main one is the antioxidant properties. Biosynthesis of PC-producing cyanobacteria is affected by many factors like nitrogen availability and light intensity during cultivation. This study aims to analyze the optimum concentration of nitrogen and light intensity during the cultivation of PC biosynthesis of marine cyanobacteria BTM 11 and identify its antioxidant properties This study was an experimental laboratory method and the PC level was determined through the variation of sodium nitrate (NaNO3) as a source of nitrogen dissolved in media and using different light intensities. The most optimum nitrogen and light intensity values of PC were measured by its antioxidant activity by 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical capture method. Data was analyzed by one-way ANOVA and the post-hoc Duncan to see whether p<0.05. The result showed that there was a significant difference in the PC level that was cultivated with the variation of NaNO3 concentrations. The highest PC level was observed in media containing 525 mg of NaNO3 and the optimum light intensity of 4500 lux. The result of the antioxidant activity assay showed that the BTM11’s PC’s antioxidant activity had its IC50 at 91.89 μg/mL and the IC50 of ascorbic acid was 2.39 μg/mL
References
Downloads
Published
Issue
Section
License
Licencing
All articles in Jurnal Ilmu Kefarmasian Indonesia are an open-access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which permits unrestricted non-commercial used, distribution and reproduction in any medium.
This licence applies to Author(s) and Public Reader means that the users mays :
- SHARE:
copy and redistribute the article in any medium or format - ADAPT:
remix, transform, and build upon the article (eg.: to produce a new research work and, possibly, a new publication) - ALIKE:
If you remix, transform, or build upon the article, you must distribute your contributions under the same license as the original. - NO ADDITIONAL RESTRICTIONS:
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
It does however mean that when you use it you must:
- ATTRIBUTION: You must give appropriate credit to both the Author(s) and the journal, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
You may not:
- NONCOMMERCIAL: You may not use the article for commercial purposes.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

















