Curcumin Analogues, PGV-0 and GVT-0, Inhibit Cholesterol Absorption Through The Reduction on Lipase Activity
Keywords:
curcumin analogues, PGV-0, GVT-0, cholesterol, lipase enzymeAbstract
Curcumin has been known to reduce cholesterol levels in hyperlipidemic state. Faculty of Pharmacy Universitas Gadjah Mada (UGM) synthesized curcumin analogues namely PGV-0 and GVT-0. Like curcumin, both PGV-0 and GVT-0 exhibit anti-inflammatory activities. The aims of this study were to determine the effect and the mechanism of curcumin analogues PGV-0 and GVT-0 on regulation of cholesterol levels in serum. This study was aimed to examine whether PGV-0 and GVT-0 affected cholesterol levels through cholesterol absorption which is regulated by lipase enzyme. To determine the reduction in cholesterol levels, rats were feed with high fat diet (HFD) for 45 days. PGV-0 and GVT-0 were given on day 31-45 at doses of 40 mg/kg bw and 60 mg/kg bw consecutively. Total cholesterol and lipase activity in serum were measured and then statistically analyzed using ANOVA and t-test. The increase of cholesterol levels was markedly reduced by the treatment with both curcumin analogues. Furthermore, lipase activity was clearly inhibited by the treatment with PGV-0 and GVT-0, suggesting that these compounds inhibit cholesterol levels through the reduction of lipase enzyme activity
References
Downloads
Published
Issue
Section
License
Licencing
All articles in Jurnal Ilmu Kefarmasian Indonesia are an open-access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which permits unrestricted non-commercial used, distribution and reproduction in any medium.
This licence applies to Author(s) and Public Reader means that the users mays :
- SHARE:
copy and redistribute the article in any medium or format - ADAPT:
remix, transform, and build upon the article (eg.: to produce a new research work and, possibly, a new publication) - ALIKE:
If you remix, transform, or build upon the article, you must distribute your contributions under the same license as the original. - NO ADDITIONAL RESTRICTIONS:
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
It does however mean that when you use it you must:
- ATTRIBUTION: You must give appropriate credit to both the Author(s) and the journal, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
You may not:
- NONCOMMERCIAL: You may not use the article for commercial purposes.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

















