Development of Analytical Method of Amoxycillin Which is Selective and Not Interferred by Its Degradation Products
Keywords:
amoxycillin, degradation products, selectivity, accuracy, UV spectrumAbstract
Assay of amoxycillin level in suspension form using spectrophotometry method at maximum wavelength around 291 nm is predicted to provide accurate and selective result because it is not interferred with its degradation products. This research aimed to obtain the predicted result. This research employed laboratory experimental method which included the process of measuring of maximum wavelength and operating time measurement, making of standard curve by measuring absorbance of amoxycillin standard solution at 40, 50, 80, 100 and 120 ppm at 290 nm and testing the selectivity and accuracy. Selectivity test was done by comparing UV spectrum and maximum absorbance of 1 mg/mL amoxycillin standard solution and 125 mg/5 mL amoxycillin suspension immediately after reconstitution with the one that was stored 9 days. Accuracy test was conducted by standard addition method using 1 mL amoxycillin suspension that was stored 9 days added by 1 mL 6260 ppm amoxycillin standard solution. Assay of amoxycillin on amoxycillin suspension by UV spectrophotometry at 290 nm using NaOH 0,1 N as solvent gave selective and accurate result with 97,36% recovery and it is not interfered with by its degradation product.
References
Downloads
Issue
Section
License
Licencing
All articles in Jurnal Ilmu Kefarmasian Indonesia are an open-access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which permits unrestricted non-commercial used, distribution and reproduction in any medium.
This licence applies to Author(s) and Public Reader means that the users mays :
- SHARE:
copy and redistribute the article in any medium or format - ADAPT:
remix, transform, and build upon the article (eg.: to produce a new research work and, possibly, a new publication) - ALIKE:
If you remix, transform, or build upon the article, you must distribute your contributions under the same license as the original. - NO ADDITIONAL RESTRICTIONS:
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
It does however mean that when you use it you must:
- ATTRIBUTION: You must give appropriate credit to both the Author(s) and the journal, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
You may not:
- NONCOMMERCIAL: You may not use the article for commercial purposes.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

















