Optimized Method of High Performance Liquid Chromatography using Octyl Silica Fully Endcapped Residual Silanol Column on Separation of Cotinine and 3-Hydroxycotinine in Urine Sample
Keywords:
cotinine, 3-hydroxycotinine, separation, octyl silica column, HPLCAbstract
Cotinine (COT) and 3-hydroxycotinine (3-HCOT) are nicotine metabolite excreted in urine. Mediated by the enzyme cytochrome P450 2A6 (CYP 2A6), nicotine will be metabolized to COT and 3-HCOT. The activity of CYP 2A6 can be predicted from the ratio 3-HCOT to the COT, therefore the ratio of 3-HCOT and COT can be used as phenotyping and polymorphism studies of the enzyme. In this study, isolation COT and 3-HCOT of urine samples was carried out by liquid-liquid back extraction. Simultaneous analysis of COT and 3-HCOT using High Performance liquid Chromatography (HPLC) was performed by a reversed-phase octyl silica column (C8; Shimadzu 250 × 4.6 mm, 5 μm) fully endcapped residual silanol. The internal standard solution (SI) was acetanilide. The mobile phase which separate COT, 3-HCOT and SI was methanol : ammonium acetate 5 mM (50:50) at a flow rate 0.8 mL/min. Retention time (tR) of the three compounds was less than 10 minutes, with peak tailing factor (tf) was less than 2. The resolution (Rs) 3-HCOT to COT was 2.67, while the Rs COT to SI was 8.836.
References
Downloads
Published
Issue
Section
License
Licencing
All articles in Jurnal Ilmu Kefarmasian Indonesia are an open-access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which permits unrestricted non-commercial used, distribution and reproduction in any medium.
This licence applies to Author(s) and Public Reader means that the users mays :
- SHARE:
copy and redistribute the article in any medium or format - ADAPT:
remix, transform, and build upon the article (eg.: to produce a new research work and, possibly, a new publication) - ALIKE:
If you remix, transform, or build upon the article, you must distribute your contributions under the same license as the original. - NO ADDITIONAL RESTRICTIONS:
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
It does however mean that when you use it you must:
- ATTRIBUTION: You must give appropriate credit to both the Author(s) and the journal, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
You may not:
- NONCOMMERCIAL: You may not use the article for commercial purposes.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

















