The Effect of PGV-1, PGV-0 and Curcumin on Protein Involve in G2-M Phase of Cell Cycle and Apoptosis on T47D Breast Cancer Cell Line
Keywords:
curcumin, PGV-0, PGV-1, cell cycle, apoptosis, T47D cellAbstract
Previous experiments showed that curcumin analogue (PGV-1) inhibited breast cancer cell (T47D) growth at G2-M phase and induced cell apoptosis. This experiment was conducted to investigate the molecular effect of another curcumin analogue, PGV-0 and curcumin on the cell cycle progression and apoptosis as compared to the PGV-1. F lowcytometric method was conducted to analyze the effect of PGV-1 (2,5 µM), PGV-0 (5,0 µM) and curcumin (10,0 µM) on the cell distribution of various phase of T47D cell cycle. Western blot was also conducted to observe the effect of those compounds on proteins that involved in cell cycle (i.e. p21 and Cdc-Z) and apoptosis (Caspase-3/7/9). The results showed that PGV-1, PGV-0 and curcumin induced hyperploidy phenomenon on T47D cell. PGV-1 inhibited the cell cycle specifically on G2-M phase. Molecular observation showed that PGV-1 and PGV-0 were able to increase the expression of p21 protein and the Cdc-2 proteins, whilst curcumin was able to activate the Cdc-2 protein. The compounds have ability to induce apoptosis on T47D cell via Caspase3/7 activation. In conclusion, PGV-1, PGV-0 and curcumin inhibited the T47D cell cycle progression and induced cell apoptosis.
References
Downloads
Published
Issue
Section
License
Licencing
All articles in Jurnal Ilmu Kefarmasian Indonesia are an open-access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which permits unrestricted non-commercial used, distribution and reproduction in any medium.
This licence applies to Author(s) and Public Reader means that the users mays :
- SHARE:
copy and redistribute the article in any medium or format - ADAPT:
remix, transform, and build upon the article (eg.: to produce a new research work and, possibly, a new publication) - ALIKE:
If you remix, transform, or build upon the article, you must distribute your contributions under the same license as the original. - NO ADDITIONAL RESTRICTIONS:
You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
It does however mean that when you use it you must:
- ATTRIBUTION: You must give appropriate credit to both the Author(s) and the journal, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
You may not:
- NONCOMMERCIAL: You may not use the article for commercial purposes.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

















